Serveur d'exploration sur les effecteurs de phytopathogènes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reference genes for gene expression analysis in the fungal pathogen Neonectria ditissima and their use demonstrating expression up-regulation of candidate virulence genes.

Identifieur interne : 000064 ( Main/Exploration ); précédent : 000063; suivant : 000065

Reference genes for gene expression analysis in the fungal pathogen Neonectria ditissima and their use demonstrating expression up-regulation of candidate virulence genes.

Auteurs : Liz M. Florez [Nouvelle-Zélande] ; Reiny W A. Scheper [Nouvelle-Zélande] ; Brent M. Fisher [Nouvelle-Zélande] ; Paul W. Sutherland [Nouvelle-Zélande] ; Matthew D. Templeton [Nouvelle-Zélande] ; Joanna K. Bowen [Nouvelle-Zélande]

Source :

RBID : pubmed:33186359

Abstract

European canker, caused by the necrotrophic fungal phytopathogen Neonectria ditissima, is one of the most damaging apple diseases worldwide. An understanding of the molecular basis of N. ditissima virulence is currently lacking. Identification of genes with an up-regulation of expression during infection, which are therefore probably involved in virulence, is a first step towards this understanding. Reverse transcription quantitative real-time PCR (RT-qPCR) can be used to identify these candidate virulence genes, but relies on the use of reference genes for relative gene expression data normalisation. However, no report that addresses selecting appropriate fungal reference genes for use in the N. ditissima-apple pathosystem has been published to date. In this study, eight N. ditissima genes were selected as candidate RT-qPCR reference genes for gene expression analysis. A subset of the primers (six) designed to amplify regions from these genes were specific for N. ditissima, failing to amplify PCR products with template from other fungal pathogens present in the apple orchard. The efficiency of amplification of these six primer sets was satisfactory, ranging from 81.8 to 107.53%. Analysis of expression stability when a highly pathogenic N. ditissima isolate was cultured under 10 regimes, using the statistical algorithms geNorm, NormFinder and BestKeeper, indicated that actin and myo-inositol-1-phosphate synthase (mips), or their combination, could be utilised as the most suitable reference genes for normalisation of N. ditissima gene expression. As a test case, these reference genes were used to study expression of three candidate virulence genes during a time course of infection. All three, which shared traits with fungal effector genes, had up-regulated expression in planta compared to in vitro with expression peaking between five and six weeks post inoculation (wpi). Thus, these three genes may well be involved in N. ditissima pathogenicity and are priority candidates for further functional characterization.

DOI: 10.1371/journal.pone.0238157
PubMed: 33186359
PubMed Central: PMC7665675


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reference genes for gene expression analysis in the fungal pathogen Neonectria ditissima and their use demonstrating expression up-regulation of candidate virulence genes.</title>
<author>
<name sortKey="Florez, Liz M" sort="Florez, Liz M" uniqKey="Florez L" first="Liz M" last="Florez">Liz M. Florez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences, University of Auckland, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheper, Reiny W A" sort="Scheper, Reiny W A" uniqKey="Scheper R" first="Reiny W A" last="Scheper">Reiny W A. Scheper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North</wicri:regionArea>
<wicri:noRegion>Havelock North</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fisher, Brent M" sort="Fisher, Brent M" uniqKey="Fisher B" first="Brent M" last="Fisher">Brent M. Fisher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North</wicri:regionArea>
<wicri:noRegion>Havelock North</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sutherland, Paul W" sort="Sutherland, Paul W" uniqKey="Sutherland P" first="Paul W" last="Sutherland">Paul W. Sutherland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Innovation, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Food Innovation, The New Zealand Institute for Plant & Food Research Limited, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Templeton, Matthew D" sort="Templeton, Matthew D" uniqKey="Templeton M" first="Matthew D" last="Templeton">Matthew D. Templeton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences, University of Auckland, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bowen, Joanna K" sort="Bowen, Joanna K" uniqKey="Bowen J" first="Joanna K" last="Bowen">Joanna K. Bowen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33186359</idno>
<idno type="pmid">33186359</idno>
<idno type="doi">10.1371/journal.pone.0238157</idno>
<idno type="pmc">PMC7665675</idno>
<idno type="wicri:Area/Main/Corpus">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000011</idno>
<idno type="wicri:Area/Main/Curation">000011</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000011</idno>
<idno type="wicri:Area/Main/Exploration">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reference genes for gene expression analysis in the fungal pathogen Neonectria ditissima and their use demonstrating expression up-regulation of candidate virulence genes.</title>
<author>
<name sortKey="Florez, Liz M" sort="Florez, Liz M" uniqKey="Florez L" first="Liz M" last="Florez">Liz M. Florez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences, University of Auckland, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Scheper, Reiny W A" sort="Scheper, Reiny W A" uniqKey="Scheper R" first="Reiny W A" last="Scheper">Reiny W A. Scheper</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North</wicri:regionArea>
<wicri:noRegion>Havelock North</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fisher, Brent M" sort="Fisher, Brent M" uniqKey="Fisher B" first="Brent M" last="Fisher">Brent M. Fisher</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North</wicri:regionArea>
<wicri:noRegion>Havelock North</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sutherland, Paul W" sort="Sutherland, Paul W" uniqKey="Sutherland P" first="Paul W" last="Sutherland">Paul W. Sutherland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Food Innovation, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Food Innovation, The New Zealand Institute for Plant & Food Research Limited, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Templeton, Matthew D" sort="Templeton, Matthew D" uniqKey="Templeton M" first="Matthew D" last="Templeton">Matthew D. Templeton</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>School of Biological Sciences, University of Auckland, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bowen, Joanna K" sort="Bowen, Joanna K" uniqKey="Bowen J" first="Joanna K" last="Bowen">Joanna K. Bowen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</nlm:affiliation>
<country xml:lang="fr">Nouvelle-Zélande</country>
<wicri:regionArea>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland</wicri:regionArea>
<wicri:noRegion>Auckland</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">European canker, caused by the necrotrophic fungal phytopathogen Neonectria ditissima, is one of the most damaging apple diseases worldwide. An understanding of the molecular basis of N. ditissima virulence is currently lacking. Identification of genes with an up-regulation of expression during infection, which are therefore probably involved in virulence, is a first step towards this understanding. Reverse transcription quantitative real-time PCR (RT-qPCR) can be used to identify these candidate virulence genes, but relies on the use of reference genes for relative gene expression data normalisation. However, no report that addresses selecting appropriate fungal reference genes for use in the N. ditissima-apple pathosystem has been published to date. In this study, eight N. ditissima genes were selected as candidate RT-qPCR reference genes for gene expression analysis. A subset of the primers (six) designed to amplify regions from these genes were specific for N. ditissima, failing to amplify PCR products with template from other fungal pathogens present in the apple orchard. The efficiency of amplification of these six primer sets was satisfactory, ranging from 81.8 to 107.53%. Analysis of expression stability when a highly pathogenic N. ditissima isolate was cultured under 10 regimes, using the statistical algorithms geNorm, NormFinder and BestKeeper, indicated that actin and myo-inositol-1-phosphate synthase (mips), or their combination, could be utilised as the most suitable reference genes for normalisation of N. ditissima gene expression. As a test case, these reference genes were used to study expression of three candidate virulence genes during a time course of infection. All three, which shared traits with fungal effector genes, had up-regulated expression in planta compared to in vitro with expression peaking between five and six weeks post inoculation (wpi). Thus, these three genes may well be involved in N. ditissima pathogenicity and are priority candidates for further functional characterization.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Data-Review" Owner="NLM">
<PMID Version="1">33186359</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Reference genes for gene expression analysis in the fungal pathogen Neonectria ditissima and their use demonstrating expression up-regulation of candidate virulence genes.</ArticleTitle>
<Pagination>
<MedlinePgn>e0238157</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0238157</ELocationID>
<Abstract>
<AbstractText>European canker, caused by the necrotrophic fungal phytopathogen Neonectria ditissima, is one of the most damaging apple diseases worldwide. An understanding of the molecular basis of N. ditissima virulence is currently lacking. Identification of genes with an up-regulation of expression during infection, which are therefore probably involved in virulence, is a first step towards this understanding. Reverse transcription quantitative real-time PCR (RT-qPCR) can be used to identify these candidate virulence genes, but relies on the use of reference genes for relative gene expression data normalisation. However, no report that addresses selecting appropriate fungal reference genes for use in the N. ditissima-apple pathosystem has been published to date. In this study, eight N. ditissima genes were selected as candidate RT-qPCR reference genes for gene expression analysis. A subset of the primers (six) designed to amplify regions from these genes were specific for N. ditissima, failing to amplify PCR products with template from other fungal pathogens present in the apple orchard. The efficiency of amplification of these six primer sets was satisfactory, ranging from 81.8 to 107.53%. Analysis of expression stability when a highly pathogenic N. ditissima isolate was cultured under 10 regimes, using the statistical algorithms geNorm, NormFinder and BestKeeper, indicated that actin and myo-inositol-1-phosphate synthase (mips), or their combination, could be utilised as the most suitable reference genes for normalisation of N. ditissima gene expression. As a test case, these reference genes were used to study expression of three candidate virulence genes during a time course of infection. All three, which shared traits with fungal effector genes, had up-regulated expression in planta compared to in vitro with expression peaking between five and six weeks post inoculation (wpi). Thus, these three genes may well be involved in N. ditissima pathogenicity and are priority candidates for further functional characterization.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Florez</LastName>
<ForeName>Liz M</ForeName>
<Initials>LM</Initials>
<AffiliationInfo>
<Affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Scheper</LastName>
<ForeName>Reiny W A</ForeName>
<Initials>RWA</Initials>
<AffiliationInfo>
<Affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fisher</LastName>
<ForeName>Brent M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Havelock North, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sutherland</LastName>
<ForeName>Paul W</ForeName>
<Initials>PW</Initials>
<AffiliationInfo>
<Affiliation>Food Innovation, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Templeton</LastName>
<ForeName>Matthew D</ForeName>
<Initials>MD</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0003-0192-9041</Identifier>
<AffiliationInfo>
<Affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Auckland, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bowen</LastName>
<ForeName>Joanna K</ForeName>
<Initials>JK</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9863-1078</Identifier>
<AffiliationInfo>
<Affiliation>Bioprotection, The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>11</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>08</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>13</Day>
<Hour>17</Hour>
<Minute>8</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33186359</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0238157</ArticleId>
<ArticleId IdType="pii">PONE-D-20-24931</ArticleId>
<ArticleId IdType="pmc">PMC7665675</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Aug;13(4):415-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20684067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Braz J Microbiol. 2016 Jan-Mar;47(1):259-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26887253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2016 Feb;17(2):210-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25919703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 May 1;30(9):1236-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24451626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012 Sep;8(9):e1002869</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Mar-Apr;105(2):398-421</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23099515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2012;50:23-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2015 Nov 19;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26586888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2017 Jun 9;12(6):e0179454</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28598997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Mar;22(3):888-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20215587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Jun 19;19(1):479</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29914370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2016 Aug 4;54:419-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27359369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Aug 1;64(15):5245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 2009 Apr;55(4):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19246619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jun 18;3(7):RESEARCH0034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12184808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hereditas. 2016 Jul 1;153:7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2003 Oct 9;553(1-2):3-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14550537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e53901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23342034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stand Genomic Sci. 2017 Dec 4;12:71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29225727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochem Anal. 2008 Nov-Dec;19(6):520-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18618437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2020 May;21(5):686-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32105402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011 Sep 29;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2004 Jul;37(1):112-4, 116, 118-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 13;8(9):e72887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 May;11(5):247-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D645-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiologyopen. 2019 May;8(5):e00721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30270521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2018 Sep;19(9):2094-2110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29569316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Aug;40(15):e115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22730293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2004 Mar;26(6):509-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15127793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 2000 Nov 20;46(1-2):69-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11086195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2004 Oct;41(10):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 Aug 25;11(8):e0160637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27560664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2013 Jan;37(1):67-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22931103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2019 Feb;123:33-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30529285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2015 Nov 19;3(6):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26586869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2018 Jul 9;2018:6125706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30079349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2016 Feb;14(2):592-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26011089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 15;7:1365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27695463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jul 27;107(30):13544-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20624958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Feb;48(2):166-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20837155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2006 Oct;49(10):1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17213908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2011 Jan;101(1):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20795854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2016 Feb 01;12(2):e1005435</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26828434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2008 Feb;9(2):151-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Feb 14;16:71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25757610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Aug 23;288(34):24898-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23824185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Aug;144(4):1899-912</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17556515</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Nouvelle-Zélande</li>
</country>
</list>
<tree>
<country name="Nouvelle-Zélande">
<noRegion>
<name sortKey="Florez, Liz M" sort="Florez, Liz M" uniqKey="Florez L" first="Liz M" last="Florez">Liz M. Florez</name>
</noRegion>
<name sortKey="Bowen, Joanna K" sort="Bowen, Joanna K" uniqKey="Bowen J" first="Joanna K" last="Bowen">Joanna K. Bowen</name>
<name sortKey="Fisher, Brent M" sort="Fisher, Brent M" uniqKey="Fisher B" first="Brent M" last="Fisher">Brent M. Fisher</name>
<name sortKey="Florez, Liz M" sort="Florez, Liz M" uniqKey="Florez L" first="Liz M" last="Florez">Liz M. Florez</name>
<name sortKey="Scheper, Reiny W A" sort="Scheper, Reiny W A" uniqKey="Scheper R" first="Reiny W A" last="Scheper">Reiny W A. Scheper</name>
<name sortKey="Sutherland, Paul W" sort="Sutherland, Paul W" uniqKey="Sutherland P" first="Paul W" last="Sutherland">Paul W. Sutherland</name>
<name sortKey="Templeton, Matthew D" sort="Templeton, Matthew D" uniqKey="Templeton M" first="Matthew D" last="Templeton">Matthew D. Templeton</name>
<name sortKey="Templeton, Matthew D" sort="Templeton, Matthew D" uniqKey="Templeton M" first="Matthew D" last="Templeton">Matthew D. Templeton</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantPathoEffV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000064 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000064 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantPathoEffV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33186359
   |texte=   Reference genes for gene expression analysis in the fungal pathogen Neonectria ditissima and their use demonstrating expression up-regulation of candidate virulence genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33186359" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantPathoEffV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 16:00:34 2020. Site generation: Sat Nov 21 16:01:01 2020